Evolving Robust Gene Regulatory Networks
نویسندگان
چکیده
Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملAdaptive Neural Networks, Gene Networks, and Evolutionary Systems – Real and Artificial Evolving Intelligence
The paper presents an integrated approach to building evolving artificial intelligent systems in terms of evolving connectionist systems (ECOS) that capture principles from neural networks, gene interaction networks and evolutionary systems. The ECOS can be used to solve complex problems from computational biology that is illustrated on a simplified gene regulatory network modeling problem. The...
متن کاملEvolving Spiking Neural Networks in the GReaNs (Gene Regulatory evolving artificial Networks) Plaftorm
GReaNs (which stands for Genetic Regulatory evolving artificial Networks) is an artificial life software platform that has previously been used for modeling of evolution of gene regulatory networks able to process signals, control animats and direct multicellular development in two and three dimensions. The structure of the network in GReaNs is encoded in a linear genome, without imposing any r...
متن کاملEvolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not...
متن کاملEvolving Networks Processing Signals with a Mixed Paradigm, Inspired by Gene Regulatory Networks and Spiking Neurons
In this paper we extend our artificial life platorm, called GReaNs (for Genetic Regulatory evolving artificial Networks) to allow evolution of spiking neural networks performign simple computational tasks. GReaNs has been previously used to model evolution of gene regulatory networks for processing signals, and also for controling the behaviour of unicallular animats and the devlopment of multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015